
Prof. Thomas B.YOON
tomayoon@ieee.org

Kyonggi University, Korea

The 14th ICACT 2012(February 19 ~22, 2012 in Phoenix Park)

“Smart Society Innovation through Mobile Internet!".

Content

• Introduction

• Problem of current Internet

• OpenFlow switch

• Network Slicing Architecture

• Experiments with OpenFlow

• OpenFlow Consortium

• Demonstrations

• Future Work

What is problem in current Internet?
#1

• Internet has become part of the critical

infrastructure of our businesses, homes and

schools.

• This success has been both a blessing and a

curse for networking researchers;

• Their work is more relevant, but their chance of

making an impact is more remote.

3

What is problem in current Internet?
#2

• The reduction in real-world impact of any given

network innovation is because the enormous

installed equipment and protocols,

• the reluctance to experiment with real traffic,

which have created an exceedingly high barrier

to entry for new ideas.

4

What is problem in current Internet?
#3

• Today, there is almost no practical way to

experiment with new network protocols in

sufficiently realistic settings to gain the

confidence needed for their widespread

deployment. .

5

Why is Evaluation Hard?

Real
Networks

Testbeds

6

What is problem in current Internet?
#4

• The result is that most new ideas from the

networking research community go untried and

untested;

• hence the commonly held belief that the network

infrastructure has “ossified”.

7

Summary of Problems

Realistically evaluating new network services is hard

Because services require changes to switches and

routers

• e.g.,
– routing protocols

– traffic monitoring services

Result: Many good ideas don't get deployed;

 Many deployed services still have bugs

8

A Proposed Solution #1

• Having recognized the problem,

• the networking community is hard at work

developing programmable networks,

• such as GENI a proposed nationwide research

facility for experimenting with new network

architectures and distributed processing systems.

9

A Proposed Solution #2

• These programmable networks call for

programmable switches and routers

• That, using virtualization, can process packets

for multiple isolated experimental networks

simultaneously.

10

A Proposed Solution #3

• Thru GENI it is envisaged that a researcher will

be allocated a slice of resources across the

whole network, consisting of a portion of network

links, packet processing elements (e.g. routers)

and end-hosts;

• Researchers can program their slices to behave

as they wish.

11

A Proposed Solution #4

• A slice could extend across the backbone, into

access networks, into college campuses,

industrial research labs, and include wiring

closets, wireless networks, and sensor networks

12

A Proposed Solution #5

• Virtualized programmable networks could lower

the barrier to entry for new ideas, increasing the

rate of innovation in the network infrastructure.

• But the plans for nationwide facilities are

ambitious and costly, and it will take years for

them to be deployed

13

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
 Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Operating
System

Operating
System

Operating
System

Operating
System

Operating
System

Ap
p

Ap
p

Ap
p

14

Current Internet
Closed to Innovations in the Infrastructure

Closed

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Ap
p

Ap
p

Ap
p

Specialized Packet
Forwarding Hardware

Operating
System

Operating
System

Operating
System

Operating
System

Operating
System

Ap
p

Ap
p

Ap
p

Network Operating System

App App App

“Software Defined Networking”
approach to open the Internet devices

15

App

Simple Packet Forw
arding Hardware

Simple Packet Forw
arding Hardware

Simple Packet Forw
arding Hardware

App App

Simple Packet Forw
arding Hardware

Simple Packet Forw
arding Hardware

Network Operating System

1. Open interface to hardware

3. Well-defined open API
2. At least one good operating system

Extensible, possibly open-source

“Software-defined Network”

16

Simple Packet
Forwarding Hardware

Network
Operating
System 1

Open interface to hardware

Virtualization or “Slicing” Layer

Network
Operating
System 2

Network
Operating
System 3

Network
Operating
System 4

App App App App App App App App

Many operating systems, or
Many versions

Open interface to hardware

Isolated “slices”

Simple Packet
Forwarding Hardware

Simple Packet
Forwarding Hardware

Simple Packet
Forwarding Hardware

Simple Packet
Forwarding Hardware

17

A Proposed Solution #6

• The OpenFlow focuses on a shorter-term

question closer to campus:

• As researchers, how can we run experiments in

our campus networks?

• If we can figure out how we can start soon and

extend the technique to other campuses to

benefit the whole community.

18

Live map showing ProtoGENI and
PlanetLab cluster resources

19

Challenge #1

• To meet this challenge, several questions need

answering, including:

• In the early days, how will college network

administrators get comfortable putting

experimental equipment like switches, routers,

access points, etc. into their network?

20

Challenge #2

• How will researchers control a portion of their

local network in a way that does not disrupt

others who depend on it?

21
21

Challenge #3

• Exactly what functionality is needed in network

switches to enable experiments?

• Goal is to propose a new switch feature that can

help extend programmability into the wiring closet

of campuses.

22

What is reality? #1

• One approach - that we do not take - is to persuade

commercial “name-brand” equipment vendors to

provide an open, programmable, virtualized

platform on their switches and routers

• so that researchers can deploy new protocols,

while network administrators can take comfort that

the equipment is well supported.

23

What is reality? #2

• This outcome is very unlikely in the short-term.

• Commercial switches and routers do not

typically provide an open software platform,

• let alone provide a means to virtualize either

their hardware or software.

• The practice of commercial networking is that

the standardized external interfaces are narrow

(i.e., just packet forwarding),

• and all of the switch’s internal flexibility is hidden.

24

What is reality? #3

• The internals differ from vendor to vendor, with no

standard platform for researchers to experiment with

new ideas.

• Further, network equipment vendors are

understandably nervous about opening up

interfaces inside their boxes:

• Because they have spent years deploying and

tuning fragile distributed protocols and algorithms,

• they fear that new experiments will bring networks

crashing down.

25

What is reality? #4

• And, of course, open platforms lower the barrier-

to-entry for new competitors.

26

What is reality in primitive platforms?
#1

• A few open software platforms already exist, but

do not have the performance or port-density we

need.

• The simplest example is a PC with several

network interfaces and an operating system.

• All well-known operating systems support

routing of packets between interfaces, and

 27

What is reality in primitive platforms?
#2

• open-source implementations of routing

protocols exist (e.g., as part of the Linux

distribution, or from XORP-open source Internet

protocol routing software suite);

• The simplest example is a in most cases it is

possible to modify the operating system to

process packets in almost any manner (e.g.,

using Click modular router).

28

What is reality in primitive platforms?
#3

• The problem, of course, is performance:

• A PC can neither support the number of ports

needed for a college wiring closet a fan-out of

100+ ports is needed per box,

• nor the packet-processing performance; wiring

closet switches process over 100Gbits/s of data

whereas a typical PC struggles to exceed

1Gbit/s the gap between the two is widening.

29

What is reality in primitive platforms?
#4

• Existing platforms with specialized hardware for

line-rate processing are not quite suitable for

college wiring closets either.

• For example, an ATCA-based virtualized

programmable router called the Supercharged

PlanetLab Platform is under development at

Washington University

30

What is reality in current platforms?
#5

• Supercharged PlanetLab Platform can use

network processors to process packets from

many interfaces simultaneously at line-rate.

• This approach is promising in the long-term, but

for the time being is targeted at large switching

centers and is too expensive for widespread

deployment in college wiring closets.

31

What is reality in primitive platforms?
#6

• At the other extreme platform is NetFPGA targeted

for use in teaching and research labs.

• NetFPGA is a low-cost PCI card with a user-

programmable FPGA for processing packets, and

4-ports of Gigabit Ethernet.

• NetFPGA is limited to just four network interfaces

— insufficient for use in a wiring closet.

32
32

NetFPGA

• NetFPGA-based implementation

– Requires PC and NetFPGA card

– Hardware accelerated

– 4 x 1 Gb/s throughput

• Maintained by Stanford University
• $500 for academics
• $1000 for industry

• Available at http://www.netfpga.org

33

What is reality in primitive platforms?
#7

• Thus, the commercial solutions are too closed

and inflexible, and the research solutions either

have insufficient performance or fan-out, or are

too expensive.

• With their complete generality, It seems unlikely

that the research solutions, can overcome their

performance or cost limitations.

34

Summary:

Not a New Problem

• Build open programmable network hardware
o NetFPGA, network processors
o but: deployment is expensive, fan-out is small

• Build bigger software testbeds

o VINI/PlanetLab, Emulab
o but: performance is slower, realistic topologies?

• Convince users to try experimental services

o personal incentive, SatelliteLab

o but: getting lots of users is hard

35

Survey Open Systems

Performanc

e Fidelity

Scale Real User

Traffic?

Complexity Open

Simulation medium medium no medium yes

Emulation medium low no medium yes

Software

Switches

poor low yes medium yes

NetFPGA high low yes high yes

Network

Processors

high medium yes high yes

Vendor

Switches

high high yes low no

None have all the desired attributes!

36

What is promising approach?
Satisfying four goals

A more promising approach is to compromise on generality

and to seek a degree of switch flexibility that is:

1. Amenable to high-performance and low-cost

implementations.

2. Capable of supporting a broad range of research.

3. Assured to isolate experimental traffic from production

traffic.

4. Consistent with vendors’ need for closed platforms

OpenFlow Switch--A specification that is an initial attempt to

meet these four goals.

37

What is basic idea ?
OpenFlow Switch #1

• The basic idea is simple: we exploit the fact that

most modern Ethernet switches and routers

• contain flow-tables typically built from TCAMs-

(Ternary Content Addressable Memory) that run

at line-rate to implement firewalls, NAT, QoS,

and to collect statistics.

38

Ethernet Switch

39

Data Path (Hardware)

Control Path Control Path (Software)

40

Data Path (Hardware)

Control Path OpenFlow

OpenFlow Controller

OpenFlow Protocol (SSL/TCP)

41

What is basic idea ?
OpenFlow Switch #2

• While each vendor’s flow-table is different,

• OpenFlow identified an interesting common set
of functions that run in many switches and
routers.

• OpenFlow exploits this common set of functions.

• OpenFlow provides an open protocol to program
the flow-table in different switches and routers.

42

What is basic idea ?
OpenFlow Switch #3

• A network administrator can partition traffic into
production and research flows.

• Researchers can control their own flows - by
choosing the routes their packets follow and
processing they receive.

• In this way, researchers can try new routing
protocols, security models, addressing schemes,
and even alternatives to IP.

43

What is basic idea ?
OpenFlow Switch #4

• On the same network, the real traffic is isolated

and processed in the same way as today.

• The data path of an OpenFlow Switch consists

of a Flow Table, and an action associated with

each flow entry.

44

What is minimum requirement ?
OpenFlow Switch #1

• The set of actions supported by an OpenFlow
Switch is extensible, but below we describe a
minimum requirement for all switches.

• For high-performance and low-cost

• the data-path must have a carefully prescribed
degree of flexibility.

• This means forgoing the ability to specify arbitrary
handling of each packet and seeking a more
limited, but still useful, range of actions.

• Therefore, later in the tutorial, define a basic
required set of actions for all OpenFlow switches

45

What is minimum requirement ?
OpenFlow Switch #2

An OpenFlow Switch consists of at least three parts:

• 1) Flow Table, with an action associated with each

flow entry, to tell the switch how to process the

flow,

• 2) Secure Channel that connects the switch to a

remote control process (called the controller),

allowing commands and packets to be sent

between a controller and the switch using

46

What is minimum requirement ?
OpenFlow Switch #3

• 3) OpenFlow Protocol, which provides an open

and standard way for a controller to communicate

with a switch.

• By specifying a standard interface (the OpenFlow

Protocol) through which entries in the Flow Table

can be defined externally, the OpenFlow Switch

avoids the need for researchers to program the

switch.

47

What is OpenFlow Switch?

• It is useful to categorize switches into dedicated

OpenFlow switches that do not support normal

Layer 2 and Layer 3 processing,

• OpenFlow-enabled general purpose commercial

Ethernet switches and routers, to which the

Open-Flow Protocol and interfaces have been

added as a new feature.

48

What is definition ?
OpenFlow switch #1

• Dedicated OpenFlow switches is a dumb

datapath element that forwards packets between

ports, as defined by a remote control process.

• Let see an example of an OpenFlow Switch.

49

OpenFlow Switch
The Flow Table is controlled by a remote controller via the Secure Channel

50

What is definition ?
OpenFlow switch #2

• In this context, flows are broadly defined, and

are limited only by the capabilities of the

particular implementation of the Flow Table.

• For example, a flow could be a TCP connection,

or all packets from a particular MAC address or

IP address, or all packets with the same VLAN

tag, or all packets from the same switch port.

51

What is definition ?
OpenFlow switch #3

• For experiments involving non-IPv4 packets,

• a flow could be defined as all packets matching

a specific (but non-standard) header.

• Each flow-entry has a simple action associated

with it

52

What is basic capability?
OpenFlow switch #1

Three basic capabilities that all dedicated

OpenFlow switches must support are:

1. Forward this flow’s packets to a given port or

ports.

• This allows packets to be routed through the

network. In most switches this is expected to

take place at line-rate

53

What is basic capability?
OpenFlow switch #2

2. Encapsulate and forward this flow’s packets to a

controller.

• Packet is delivered to Secure Channel, where it

is encapsulated and sent to a controller.

• Typically used for the first packet in a new flow,

so a controller can decide if the flow should be

added to the Flow Table.

• Some experiments, it could be used to forward

all packets to a controller for processing.

54

What is basic capability?
OpenFlow switch #3

3. Drop this flow’s packets.

• It can be used for security, to curb denial of

service attacks, to reduce spurious broadcast

discovery traffic from end-hosts.

55

What is Flow-Table? #1

An entry in the Flow-Table has three fields:

1) Packet header that defines the flow,

2) Action, which defines how the packets should be
processed, and

3) Statistics, which keep track of the number of
packets and bytes for each flow, and the time since
the last packet matched the flow (to help with the
removal of inactive flows).

56

What is Flow-Table? #2

• In the first generation “Type 0” switches, the flow

header is a 10-tuples.

• TCP flow could be specified by all ten fields,

whereas an IP flow might not include the

transport ports in its definition.

• Header field can be a wildcard to allow for

aggregation of flows,

• Thus, flows in which only the VLAN ID is defined

would apply to all traffic on a particular VLAN.

57

Header fields matched in
 “Type 0” OpenFlow switch

• The detailed requirements of an OpenFlow
Switch are defined by

• the OpenFlow Switch Specification.

58

Controller

PC

Hardware
Layer

Software
Layer

Flow Table
MAC
src

MAC
dst

IP
Src

IP
Dst

TCP
sport

TCP
dport

Action

OpenFlow Firmware

* * 5.6.7.8 * * * port 1

port 4 port 3 port 2 port 1

1.2.3.4 5.6.7.8

OpenFlow Flow Table Abstraction

59

Network Slicing Architecture

• Network Slice is a collection of sliced switches /

routers

• Data plane is unmodified, thus Packets forwarded

without performance penalty

• Slicing by exploiting the existing Data Path ASIC

• Transparent Slicing Layer:

– each slice believes it owns the data path

– enforces isolation between slices

– Rewrites / drops rules to adhere to slice police

– forwards exceptions to correct slice(s)

60

Network Slicing Architecture
Existing Network Device

Control
Plane

Data
Plane

Switch / Router

General-purpose
CPU

Custom
ASIC

• Computes forwarding rules
• “128.8.128/16 --> port 6”

• Pushes rules down to data
 plane

• Enforces forwarding rules
• Exceptions pushed back to
 control plane
 e.g., unmatched packets

Rules Excepts Control/Data
Protocol

61

Network Slicing Architecture
Add the Slicing Layer Between Planes

Data
Plane

Rules Excepts

Slice 1
Control
Plane

Slice 2
Control
Plane

Control/Data
Protocol

Slice
Policies

Slice 3
Control
Plane

62

Network Slicing Architecture
Slicing Policies

The policy specifies resource limits for each slice:

 Link bandwidth

 Maximum number of forwarding rules

 Topology

 Fraction of switch / router CPU

63

Network Slicing Architecture
FlowSpace: Map Packets to Slices

Which packets does the slice control?

64

Network Slicing Architecture
Flow Table Entries

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline
5. Modify Fields

+ mask what fields to match

Packet + byte counters

65

Network Slicing Architecture

Examples: Flow Table Entries
Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* 00:1f:.. * * * * * * * port6

Flow Switching

port3

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

00:20.. 00:1f.. 0800 vlan1 1.2.3.4 5.6.7.8 4 17264 80 port6

Firewall

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Forward

* * * * * * * * 22 drop

66

Network Slicing Architecture

Examples: Flow Table Entries

Routing

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* * * * * 5.6.7.8 * * * port6

VLAN Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* * vlan1 * * * * *

port6,
port7,
port9

00:1f..

67

Network Slicing Architecture
What is OpenFlow-enabled switch? #1

Some commercial switches, routers and access

points enhanced with the OpenFlow Feature by

adding the Flow Table, Secure Channel and

OpenFlow Protocol.

• Typically, the Flow Table will reuse existing

hardware, such as a TCAM(Ternary Content

Addressable Memory);

• the Secure Channel and Protocol will be ported

to run on the switch’s operating system.

68

Network Slicing Architecture
What is OpenFlow-enabled switch? #2

• All the Flow Tables are managed by the controller

• OpenFlow Protocol allows a switch to be controlled

by two or more controllers for increased

performance or robustness.

69

Network Slicing Architecture
OpenFlow enabled commercial switches and routers

70

Network Slicing Architecture
How to isolate experimental traffic ?

• Goal is to enable experiments to take place in an

existing real network alongside regular traffic

and applications. to win the confidence of

network administrators,

• Therefore, OpenFlow-enabled switches must

isolate experimental traffic from real service

traffic

• experimental traffic processed by the Flow Table,

but real service traffic processed by the normal

Layer 2 and Layer 3 pipeline of the switch

• .

71

71

Network Slicing Architecture
What is OpenFlow’s 4th action?

• There are two ways to achieve this separation.

• One is to add a fourth action:

 4) Forward this flow’s packets through

 the switch’s normal processing pipeline.

• The other is to define separate sets of VLANs for
experimental and real traffic.

• All OpenFlow-enabled switches support one
approach or the other or both.

72

Network Slicing Architecture
What is “Type 1” switch?

We expect that many switches will support additional

actions, for example

• Rewrite portions of the packet header, (e.g., for

NAT, or to obfuscate addresses on intermediate

links),

• Map packets to a priority class.

• Likewise, some Flow Tables will be able to match

on arbitrary fields in the packet header, enabling

experiments with new non-IP protocols.

As a particular set of features emerges, we will define

a “Type 1” switch.

73

Network Slicing Architecture
What is Controller?

• A controller adds and removes flow-entries from the
Flow Table on behalf of experiments.

• For example, a static controller might be a simple
application running on a PC to statically establish
flows to interconnect a set of test computers for the
duration of an experiment.

• In this case, the flows resemble VLANs in current
networks—providing a simple mechanism to isolate
experimental traffic from the production network.

• Viewed this way, OpenFlow is a generalization of
VLANs.

74

Network Slicing Architecture
What is Controller?

• Sophisticated controllers that dynamically

add/remove flows as an experiment

progresses.

• By using the controller, a researcher might

control the complete network of OpenFlow

Switches and be free to decide how all flows

are processed.

75

Network Slicing Architecture
What is Controller? #2

• Support multiple researchers, each with different

accounts and permissions,

• enabling them to run multiple independent

experiments on different sets of flows.

• Under the control of a particular researcher by a

policy table running in a controller, Flows could

be delivered to a researcher’s user-level control

program

• In which it decides if a new flow-entry should be

added to the network of switches.

76

Network Slicing Architecture
Centralized vs Distributed Control

Centralized Control

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

Controller

Distributed Control

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

Controller

Controller

Controller

77

Network Slicing Architecture
Flow Routing vs. Aggregation

Flow-Based

• Every flow is individually

set up by controller

• Exact-match flow entries

• Flow table contains one

entry per flow

• Good for fine grain

control,

• e.g. campus networks

 Aggregated

• One flow entry covers large

groups of flows

• Wildcard flow entries

• Flow table contains one

entry per category of flows

• Good for large number of

flows,

• e.g. backbone

78

– The individual controllers and the FlowVisor are applications on commo

dity PCs (not shown)

Network Slicing Architecture
Stanford Infrastructure

Flows

OpenFlow
switches

WiMax

Packet

process
ors

Wi-Fi
APs

79

Network Slicing Architecture
Reactive vs. Proactive

Reactive

• First packet of flow

triggers controller
to insert flow entries

• Efficient use of flow
table

• Every flow incurs small
additional flow setup
time

• If control connection lost
, switch has limited
utility

Proactive

• Controller pre-populates

flow table in switch

• Zero additional flow setup

time

• Loss of control connection

does not disrupt traffic

• Essentially requires aggre

gated (wildcard) rules

80

Network Slicing Architecture
Experiment Setup Overview

Step 1:

Write/Configure/Deploy

OpenFlow controller

Step 2:

Create Slice and

register experiment

Step 3:

Control the traffic of

users that opt-in to

your experiment

• Each controller implements per-experiment

custom forwarding logic

• Write your own or download pre-existing

• Configure per-experiment topology, queuing

restricted to subset of real topology

• Specify desired user traffic: e.g., tcp.port=80

• Users opt-in via the Opt-In Manager website

• Reserving a compute node makes the experi

menter a user on the network

81

Network Slicing Architecture
Experiment :Amy-OSPF #1

• As a simple example of how an OpenFlow

Switch might be used imagine that Amy (a

researcher) invented Amy-OSPF as a new

routing protocol to replace OSPF(Open Shortest Path

First) IP routing protocol.

• She wants to try her protocol in a network of

OpenFlow Switches, without changing any end-

host software.

82

Network Slicing Architecture
Experiment :Amy-OSPF #2

• Amy-OSPF will run in a controller;

• each time a new application flow starts Amy-

OSPF to pick a route through a series of

OpenFlow Switches, and adds a flow- entry in

each switch along the path.

• In her experiment, Amy decides to use Amy-

OSPF for the traffic entering the OpenFlow

network from her own desktop PC

• so she doesn’t disrupt the network for others.

83

• To do this, she defines one flow to be all the traffic
entering the Open-Flow switch through the switch
port her PC is connected to,

• and adds a flow-entry with the action “Encapsulate
and forward all packets to a controller”.

• When her packets reach a controller, her new
protocol chooses a route and adds a new flow-
entry for the application flow to every switch along
the chosen path.

• When subsequent packets arrive at a switch, they
are processed quickly and at line-rate by the Flow
Table.

Network Slicing Architecture
Experiment :Amy-OSPF #3

84

Network Slicing Architecture
Questions of OpenFlow Switch ?

• There are legitimate questions to ask about the

performance, reliability and scalability of a

controller that dynamically adds and removes

flows as an experiment progresses:

• Can such a centralized controller be fast enough

to process new flows and program the Flow

Switches?

• What happens when a controller fails?

85

Network Slicing Architecture
Performance of Ethane prototype #1

• To some extent these questions were addressed

in the context of the Ethane prototype,

• which used simple flow switches and a central

controller.

• Preliminary results suggested that an Ethane

controller based on a low-cost desktop PC could

process over 10,000 new flows per second.

• enough for a large scale college campus.

86

Network Slicing Architecture
Performance of Ethane prototype #2

• Of course, the rate at which new flows can be

processed will depend on the complexity of the

processing required by the researcher’s

experiment.

• But it gives us confidence that meaningful

experiments can be run.

• Scalability and redundancy are possible by

making a controller (and the experiments)

stateless, allowing simple load-balancing over

multiple separate devices.

87

Network Slicing Architecture
Two additional properties of OpenFolw #1

• Chances are, Amy is testing her new protocol in a
network used by lots of other people. We therefore
want the network to have two additional
properties:

• 1. Packets belonging to users other than Amy
should be routed using a standard and tested
routing protocol running in the switch or router
from a “name-brand” vendor.

• 2. Amy should only be able to add flow entries for
her traffic, or for any traffic her network
administrator has allowed her to control.

88

Network Slicing Architecture
Two additional properties of OpenFolw #2

• Property 1 is achieved by OpenFlow-enabled

switches.

• In Amy’s experiment, the default action for all

packets that don’t come from Amy’s PC could be

to forward them through the normal processing

pipeline.

• Amy’s own packets could be forwarded directly

to the outgoing port, without being processed by

the normal pipeline.

89

Network Slicing Architecture
Two additional properties of OpenFolw #3

• Property 2 depends on the controller.

• The controller should be seen as a platform that

enables researchers to implement various

experiments,

• Property 2 can be achieved with the appropriate

use of permissions or other ways to limit the

powers of individual researchers to control flow

entries.

90

Network Slicing Architecture
Two additional properties of OpenFolw #4

• The exact nature of these permission-like
mechanisms will depend on how the controller is
implemented. – Controller is almighty!

• We expect that a variety of controllers will emerge.

• As an example of a concrete realization of a
controller, some of the authors are working on a
controller called NOX as a follow-on to the Ethane
work.

• A quite different controller might emerge by
extending the GENI management software to
OpenFlow networks.

91

Network Slicing Architecture
More Experiments of OpenFlow

• As with any experimental platform, the set of

experiments will exceed those we can think of

up-front

• most experiments in OpenFlow networks are yet

to be thought of.

• Here, for illustration, we offer some examples of

how OpenFlow-enabled networks could be used

to experiment with new network applications and

architectures.

92

Network Slicing Architecture
Network Management and Access Control #1

• We’ll use Ethane as our first example as it was

the research that inspired OpenFlow.

• In fact, an OpenFlow Switch can be thought of

as a generalization of Ethane’s datapath switch.

• Ethane used a specific implementation of a

controller, suited for network management and

control, that manages the admittance and

routing of flows

93

Network Slicing Architecture
Network Management and Access Control #2

• The basic idea of Ethane is to allow network

managers to define a network-wide policy in the

central controller, which is enforced directly by

making admission control decisions for each

new flow.

• A controller checks a new flow against a set of

rules, such as “Guests can communicate using

HTTP, but only via a web proxy” or “VoIP

phones are not allowed to communicate with

laptops.”

94

Network Slicing Architecture
Network Management and Access Control #3

• A controller associates packets with their senders
by managing all the bindings between names
and addresses

• it essentially takes over DNS, DHCP(Dynamic Host

Configuration Protocol), and authenticates all users
when they join, keeping track of which switch
port or access point they are connected to.

• One could envisage an extension to Ethane in
which a policy dictates that particular flows are
sent to a user’s process in a controller,

• hence allowing researcher-specific processing to
be performed in the network.

95

Network Slicing Architecture
VLANs

• OpenFlow can easily provide users with their own isolated
network, just as VLANs do.

• The simplest approach is to statically declare a set of flows
which specify the ports accessible by traffic on a given
VLAN ID.

• Traffic identified as coming from a single user

• for example, originating from specific switch ports or MAC
addresses is tagged by the switches via an action with the
appropriate VLAN ID.

• A more dynamic approach might use a controller to
manage authentication of users and use the knowledge
of the users’ locations for tagging traffic at runtime.

96

Network Slicing Architecture
Mobile wireless VoIP clients

• For this example consider an experiment of a new

call- handoff mechanism for WiFi-enabled phones.

• In the experiment VOIP clients establish a new

connection over the OpenFlow- enabled network.

• A controller is implemented to track the location of

clients, re-routing connections by reprogramming

the Flow Tables

• as users move through the network, allowing

seamless handoff from one access point to another.

97

Network Slicing Architecture
non-IP network #1

• So far, our examples have assumed an IP

network, but OpenFlow doesn’t require packets

to be of any one format

• so long as the Flow Table is able to match on

the packet header.

• This would allow experiments using new naming,

addressing and routing schemes.

• There are several ways an OpenFlow-enabled

switch can support non-IP traffic.

98

Network Slicing Architecture
non-IP network #2

• For example, flows could be identified using

their Ethernet header (MAC src and dst

addresses), a new EtherType value, or at the IP

level, by a new IP Version number.

• More generally, we hope that future switches will

allow a controller to create a generic mask

• (offset + value + mask), allowing packets to be

processed in a researcher-specified way

99

Network Slicing Architecture
Processing packets rather than flows #1

• The examples above are for experiments involving
flows —where a controller makes decisions when
the flow starts.

• There are, of course, interesting experiments to be
performed that require every packet to be
processed.

• For example, an intrusion detection system that
inspects every packet,

• an explicit congestion control mechanism,

• when modifying the contents of packets, such as
when converting packets from one protocol format
to another.

 100

Network Slicing Architecture
Processing packets rather than flows #2

• There are two basic ways to process packets in an
OpenFlow-enabled network.

• First, and simplest, is to force all of a flow’s packets to
pass through a controller.

• To do this, a controller doesn’t add a new flow entry
into the Flow Switch — it just allows the switch to
default to forwarding every packet to a controller.

• This has the advantage of flexibility, at the cost of
performance.

• It might provide a useful way to test the functionality of
a new protocol, but is unlikely to be of much interest
for deployment in a large scale network.

101

Network Slicing Architecture
Processing packets rather than flows #1

• The second way to process packets is to route them to
a programmable switch that does packet processing
— for example, a NetFPGA-based programmable
router.

• The advantage is that the packets can be processed
at line-rate in a user-definable way;

• OpenFlow-enabled switch operates essentially as a
patch-panel to allow the packets to reach the
NetFPGA.

• In some cases, the NetFPGA board, a PCI board that
plugs into a Linux PC, might be placed in the wiring
closet alongside the OpenFlow-enabled switch, or
more likely in a laboratory.

102

Network Slicing Architecture
Processing packets rather than flows #1

through an external line-rate packet-processing device,

such as a programmable NetFPGA router

103

Network Slicing Architecture
VLAN Based Partitioning

Partition Flows based on Ports and VLAN Tags
 Traffic entering system (e.g. from end hosts) is tagged
 VLAN tags consistent throughout substrate

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

* * * * 1,2,3 * * * * *

* * * * 7,8,9 * * * * *

* * * * 4,5,6 * * * * *

104

Network Slicing Architecture
New CDN - Turbo Coral ++

• Basic Idea: Build a CDN where you control the entire network

– All traffic to or from Coral IP space controlled by Experimenter

– All other traffic controlled by default routing

– Topology is entire network

– End hosts are automatically added (no opt-in)

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

* * * * * 84.65.* * * * *

* * * * * * 84.65.* * * *

* * * * * * * * * *

105

Network Slicing Architecture
Aaron’s IP

– A new layer 3 protocol

– Replaces IPv4, IPv6, …

– Defined by a new Ether Type

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

* * * AaIP * * * * * *

* * * !AaIP * * * * * *

106

OpenFlowSwitch.org

Controller

OpenFlow
Switch

PC

Network Slicing Architecture
Aaron’s IP

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Protocol

Aaron’s code

Rule Action Statistics

Rule Action Statistics Rule Action Statistics

107

OpenFlow Consortium
#1

• The OpenFlow Consortium aims to popularize

OpenFlow and maintain the OpenFlow Switch

Specification.

• The Consortium is a group of researchers and

network administrators at universities and colleges

who believe their research mission will be

enhanced if OpenFlow-enabled switches are

installed in their network.

• Membership is open and free for anyone at a

school, college, university, or government agency

worldwide.

108

OpenFlow Consortium
#2

• The OpenFlow Consortium welcomes individual
members who are not employed by companies that
manufacture or sell Ethernet switches, routers or
wireless access points, because we want to keep the
consortium free of vendor influence.

• To join, send email to join@OpenFlowSwitch.org.

• The Consortium web-site

http://www.OpenFlowSwitch.org contains the
OpenFlow Switch Specification, a list of consortium
members, and reference implementations of
OpenFlow switches.

109

http://www.openflowswitch.org/

OpenFlow - Licensing Model

• The OpenFlow Switch Specification is free for all

commercial and non-commercial use.

• The exact wording is on the web-site.

• Commercial switches and routers claiming to be

“OpenFlow-enabled” must conform to the

requirements of an OpenFlow Type 0 Switch,

• as defined in the OpenFlow Switch Specification.

• OpenFlow is a trademark of Stanford University,

and will be protected on behalf of the Consortium

110

Market Opportunity
#1

• There is an interesting market opportunity for
network equipment vendors to sell OpenFlow-
enabled switches to the research community.

• Every building in thousands of colleges and
universities contains wiring closets with Ethernet
switches and routers, and with wireless access points
spread across campus.

• Several switch and router manufacturers who are
adding the OpenFlow feature to their products by
implementing a Flow Table in existing hardware; i.e.
no hardware change is needed.

• The switches run the Secure Channel software on
their existing processor

111

Market Opportunity
#2

• Network equipment vendors to be very open to
the idea of adding the OpenFlow feature.

• Most vendors would like to support the research
community without having to expose the internal
workings of their products.

• Large scale OpenFlow at Stanford University.

• Eventually, all traffic runs over the OpenFlow
network, with production traffic and experimental
traffic being isolated on different VLANs under
the control of network administrators.

112

Market Opportunity
#3

• Researchers can control their own traffic, and be able to
add/remove flow-entries.

• Many different OpenFlow Switches developed by the
research community.

• OpenFlow Website contains “Type 0” reference designs for
several different platforms: Linux (software), OpenWRT
(software, for access points), and NetFPGA (hardware, 4-
ports of 1GE).

• As more reference designs are created by the community
we will post them.

• The forum encourage developers to test their switches
against the reference designs.

• All reference implementations of OpenFlow switches posted
on the web site will be open-source and free for
commercial and non-commercial use.

113

OpenFlow Vendor Hardware

more to follow...

NEC IP8800

HP ProCurve 5400
and others

Juniper MX-series
(prototype) Cisco Catalyst 6k

(prototype)
Core
Router

Enterprise
Campus
Data Center

Circuit
Switch

Wireless

Pronto

Prototype Product

Ciena CoreDirector

WiMAX (NEC)

Cisco Catalyst 3750
(prototype)

Arista 7100 series
(Q4 2010)

114

OpenFlow Demonstration Overview

Network

Virtualization
FlowVisor

Hardware

Prototyping
OpenPipes

Load Balancing PlugNServe

Energy Savings ElasticTree

Mobility MobileVMs

Traffic Engineering Aggregation

Wireless Video OpenRoads

Topic Demo

115

Network Slicing Architecture Demo
FlowVisor : Creates Virtual Networks

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Protocol

FlowVisor

OpenPipes
Demo

OpenRoads
Demo

OpenFlow
Protocol

PlugNServe
Load-balancer

OpenPipes
Policy

FlowVisor slices OpenFlow
networks, creating multipl
e isolated and programmab
le logical networks on the s

ame physical topology.

Each demo presented here

runs in an isolated slice of

Stanford’s production network.

116

Network Slicing Architecture Demo
FlowVisor : Creates Virtual Networks

Normal L2/L3 Processing

 Flow Table

Production VLANs

Research VLAN 1

Controller

Research VLAN 2

 Flow Table

Controller

117

OpenFlow
Switch

OpenFlow

Protocol

OpenFlow FlowVisor
& Policy Control

Craig’s
Controller

Heidi’s
Controller Aaron’s

Controller

OpenFlow

Protocol

Network Slicing Architecture Demo
FlowVisor: Creates Virtual Networks

OpenFlow
Switch

OpenFlow
Switch

118

OpenFlow
Protocol

OpenFlow
FlowVisor & Policy Control

Broadcast
Multicast

OpenFlow
Protocol

http
Load-balancer

Network Slicing Architecture Demo
FlowVisor : Creates Virtual Networks, Separation not only

by VLANs, but any L1-L4 pattern

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

119

Network Slicing Architecture Demo
OpenPipes : Plumbing with OpenFlow to build

hardware systems

Partition hardware designs

Test
Mix

resources

120

Goal: Load-balancing requests in unstructured networks

Network Slicing Architecture Demo
Plug-n-Serve: Load-Balancing Web Traffic

OpenFlow means…

 Complete control over traffic within the
network
Visibility into network conditions
Ability to use existing commodity hardware

What we are showing
 OpenFlow-based distributed load-balancer
 Smart load-balancing based on network and
server load
Allows incremental deployment of additional
resources

This demo runs on top of the FlowVisor, sharing the same physical network with other experiments and production traffic.
121

Network Slicing Architecture Demo
ElasticTree : Reducing Energy in Data Center Networks

Demo:

• Hardware-based 16-
node Fat Tree

• Your choice of traffic
pattern, bandwidth,
optimization strategy

• Graph shows live
power and latency
variation

• Shuts off links and switches to reduce data center power

• Choice of optimizers to balance power, fault tolerance, and BW

• OpenFlow provides network routes and port statistics

demo credits: Brandon Heller, Srini Seetharaman, Yiannis Yiakoumis, David Underhill 122

Network Slicing Architecture Demo
MobileVMs : Dynamic Flow Handover

123

Network Slicing Architecture Demo
Aggregation : Dynamic Flow Aggregation Scope

•Different Networks want different flow granularity (ISP, Backbone,…)
• Switch resources are limited (flow entries, memory)
• Network management is hard
• Current Solutions : MPLS, IP aggregation

How OpenFlow Helps?
• Dynamically define flow granularity by wildcarding arbitrary header fields
• Granularity is on the switch flow entries, no packet rewrite or encapsulation
• Create meaningful bundles and manage them using your own software (reroute, monitor)
 Higher Flexibility, Better Control, Easier Management, Experimentation

124

Network Slicing Architecture Demo
OpenRoad : Intercontinental VM Migration

Moved a VM from Stanford to Korea, Japan without changing its IP.

VM hosted a video game server with active network connections.
125

Summary:
What is OpenFlow? #1

• OpenFlow is a platform for researchers to run

their experimental protocols in the networks they

use every day.

• OpenFlow is based on an Ethernet switch, with

an internal flow-table, and a standardized

interface to add and remove flow entries.

126

Summary :
What is OpenFlow? #2

• The goal is to encourage networking vendors to

add OpenFlow platform to their switch products for

deployment in college campus backbones and

wiring closets.

127

Summary :
What is OpenFlow? #3

• OpenFlow is a pragmatic compromise:

• It allows researchers to run experiments on

heterogeneous switches in a uniform way at full-

line-speed and with high port-density;

• Vendors do not need to expose the internal

workings of their switches.

128

Summary :
What is OpenFlow? #4

• Allowing researchers to evaluate their ideas in

real-world traffic settings,

• OpenFlow could serve as a useful campus

component in proposed large-scale testbeds

like GENI.

• Stanford University are running OpenFlow

networks, using commercial Ethernet switches

and routers.

129

Conclusion

• OpenFlow is a pragmatic compromise that allows researchers
to run experiments on heterogeneous switches and routers in a
uniform way, without the need for vendors to expose the
internal workings of their products, or researchers to write
vendor-specific control software.

• Successful in deploying OpenFlow networks in campuses,
OpenFlow will gradually catch-on in other universities,
increasing the number of networks that support experiments.

• New generation of control software emerges, allowing
researchers to reuse controllers and experiments, and build on
the work of others.

• OpenFlow networks at different universities interconnected by
tunnels and overlay networks

• New Open-Flow networks running in the backbone networks
that connect universities to each other.

130

Future Work

• Internet needs innovation. But we still don’t know
exactly what functions and features that the future
Internet should include.

• We think, it may be not proper to build a concrete
and fixed network for the future Internet now.

• We think, innovation ability is what the future
Internet really needs now!

• OpenFlow’s openness and standardization give
Internet more powerful abilities to reform and
innovate.

• More hardware resources in devices should be
exposed and standardized

131

Prof. Thomas B.YOON
tomayoon@ieee.org

Kyonggi University, Korea

The 14th ICACT 2012(February 19 ~22, 2012 in Phoenix Park)

“Smart Society Innovation through Mobile Internet!".

